【数学求导公式】在数学中,求导是微积分的重要组成部分,用于研究函数的变化率。掌握常见的求导公式对于学习微积分、解决实际问题具有重要意义。以下是对常见数学求导公式的总结,以文字加表格的形式呈现。
一、基本求导公式
1. 常数函数的导数
如果 $ f(x) = C $(C为常数),则导数为:
$$
f'(x) = 0
$$
2. 幂函数的导数
如果 $ f(x) = x^n $,其中 $ n $ 为任意实数,则导数为:
$$
f'(x) = nx^{n-1}
$$
3. 指数函数的导数
- 若 $ f(x) = a^x $,则导数为:
$$
f'(x) = a^x \ln a
$$
- 若 $ f(x) = e^x $,则导数为:
$$
f'(x) = e^x
$$
4. 对数函数的导数
- 若 $ f(x) = \log_a x $,则导数为:
$$
f'(x) = \frac{1}{x \ln a}
$$
- 若 $ f(x) = \ln x $,则导数为:
$$
f'(x) = \frac{1}{x}
$$
5. 三角函数的导数
- $ f(x) = \sin x $,导数为:
$$
f'(x) = \cos x
$$
- $ f(x) = \cos x $,导数为:
$$
f'(x) = -\sin x
$$
- $ f(x) = \tan x $,导数为:
$$
f'(x) = \sec^2 x
$$
- $ f(x) = \cot x $,导数为:
$$
f'(x) = -\csc^2 x
$$
6. 反三角函数的导数
- $ f(x) = \arcsin x $,导数为:
$$
f'(x) = \frac{1}{\sqrt{1 - x^2}}
$$
- $ f(x) = \arccos x $,导数为:
$$
f'(x) = -\frac{1}{\sqrt{1 - x^2}}
$$
- $ f(x) = \arctan x $,导数为:
$$
f'(x) = \frac{1}{1 + x^2}
$$
二、复合函数与链式法则
若 $ y = f(g(x)) $,则导数为:
$$
\frac{dy}{dx} = f'(g(x)) \cdot g'(x)
$$
三、常见函数导数汇总表
| 函数形式 | 导数 |
| $ f(x) = C $ | $ 0 $ |
| $ f(x) = x^n $ | $ nx^{n-1} $ |
| $ f(x) = a^x $ | $ a^x \ln a $ |
| $ f(x) = e^x $ | $ e^x $ |
| $ f(x) = \log_a x $ | $ \frac{1}{x \ln a} $ |
| $ f(x) = \ln x $ | $ \frac{1}{x} $ |
| $ f(x) = \sin x $ | $ \cos x $ |
| $ f(x) = \cos x $ | $ -\sin x $ |
| $ f(x) = \tan x $ | $ \sec^2 x $ |
| $ f(x) = \cot x $ | $ -\csc^2 x $ |
| $ f(x) = \arcsin x $ | $ \frac{1}{\sqrt{1 - x^2}} $ |
| $ f(x) = \arccos x $ | $ -\frac{1}{\sqrt{1 - x^2}} $ |
| $ f(x) = \arctan x $ | $ \frac{1}{1 + x^2} $ |
四、结语
掌握这些基本的求导公式是进一步学习微积分、应用数学分析的基础。在实际问题中,灵活运用这些公式能够帮助我们更高效地解决问题。建议通过练习加深理解,并结合图形和实例进行验证。


